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ABSTRACT

The free vibrations of finite cylindrical shells are inveatigated.

With the aid of a number of simplifying assumptions, a frequency equa-

tion based on the known characteristic functions for beams with any

combination of boundary conditions is obtained. Experimental results

for frequency spectra and mode shapes of a cylinder fixed on one edge

and free on the other are in good agreement with both Rayleigh's inexten-

sional theory and the approximate frequency equation. Structural damping

coefficients obtained for the test cylinders are compared with those of

previous investigations.
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NOMENCLATURE

b Parameter 12O( v

c Geometry parameter 1_77€ _~~12 (1 - v R

.1 Eh 3

D Flexural stiffness of cylinder wall L1[ (I - Vj

E Young's modulus of cylinder material

f Frequency (cyc/sec) (f =I )

f'fg Viscous damping coefficient

h Thickness of the cylinder

£ Length of the cylinder

m-I Number of nodes in axial mode shape

n Number of circumferential waves

p Internal or external pressure

R Radius of cylinder

t Time

w Radial deflection

x Distance along the longitudinal axis of the cylinder

8 Angle denoting the circumferential location of a point on the
cylinder middle surface

Nondimensional axial coordinate (j)

Xmn Axial wave length parameter (-M-

P Density of the shell material

* Circular frequency (2TTf)

o Frequency parameter [12PR4 1 -v 2 2 j h2

72 *2 1 +)2

-2 1 b+6 ez



Page v

CONTENTS

Page

I. INTRODUCTION ......................... 1

II. APPROXIMATE METHOD OF ANALYSIS ............ 2

III. EXPERIMENTAL INVESTIGATION ............... 5

IV. COMPARISON Cu CLAMPED-FREE CYLINDER TEST
RESULTS WITH THEORY ......... .............. 5

V. CONCLUSIONS .......................... 11

VI. ACKNOWLEDGMENT ...................... 15

APPENDIX: STRUCTURAL DAMPING ............... 16

REFERENCES ............................. 19



Page vi

ILLUSTRATIONS

Figure Page

1 Over-all View of Test Setup ....... .................. 7
2 A Typical Mode Shape Record ...... ............... 8

3 Graphical Comparison of Experimental Results with
Theory for m = I of a Clamped-Free Shell (a/h = 400) .... 9

4 Graphical Comparison of Experimental Results with
Theory for mn = I of a Clamped-Free Shell (a/h = 100). . . . 10

5 Graphical Comparison of Experimental Results with
Theory for mi> 1 of a Clamped-Free Shell (a/h =400). . .. 13

6 Graphical Comparison of Experimental Results with
Theory for m > I of a Clamped-Free Shell (a/h = 100). . 14

7 Typical Decay Curve .............................. 17
8 Viscous Damping Coefficient as a Function of Number

of Circumferential Waves ......... .................. 18



Page 1

I. INTRODUCTION

The free vibration of a cylindrical shell has interested many investigators.

In 1894, Lord Rayleigh (Reference 1) derived an approximate expression for
the natural frequencies of vibration of a cylindrical shell based on a separation

of the effects of bending and stretching. A later treatment by Love (Reference

2) resulted in a general dynamical theory of shells which included both bending

and extensional deformations. Love's equations were first used by Flugge

(Reference 3) to obtain a cubic frequency equation for a simply supported cylinder,

a result which indicated that there were three frequencies for each nodal pattern.

A more detailed investigation made by Arnold and Warburton (References 4 and 5)

showed that the three frequencies corresponded to essentially radia, axial and

circumferential vibrations with the radial vibration frequency much lower than
the other two. Their analysis also showed that the natural frequency may de-

crease as the number of circumferential waves increases, in contrast with the

results of inextensional theory. Arnold and Warburton also investigated the

natural frequencies of cylinders clamped at both edges, with the use of the

Rayleigh-Ritz method.

Recent investigators have concentrated on simplifying the method of analysis

of vibrating cylindrical shells. By means of a number of approximations, Yu

(Reference 6) was able to obtain a simple expression for the radial frequencies

of a clamped or simply supported cylinder vibrating in a mode consisting of a

number of circumferential waves that is large compared to the number of axial
waves. Simplified frequency equations were also obtained by Vlasov (Reference

7), Breslavskii (Reference 8), and Reissner (Reference 9) by neglecting the cir-

cumferential and axial inertia forces of the shell. Finally, the simplifications of

Breslavskii and Yu were combined by Rapoport (Reference 10) to yield frequency

equations for a shell with various boundary conditions.

In the present paper, a method similar to Rapoport's has been used. An

experimental investigation of the frequency spectra and mode shapes of a

clamped-free cylinder was also performed. The experimental data are in good

agreement with theory. Structural damping was investigated as a secondary

part of the experimental program. Viscous damping coefficients were obtained
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for each resonance point of the supported-free cylinder and tabulated as a

function of wave shape and frequency. The results are compared with those

of previous investigations in the Appendix.

II. APPROXIMATE METHOD OF ANALYSIS

The well-known Donnell differential equation of a circular cylindrical

shell under an external radial loading p can be written as (Reference 11)

8 Eh a4 w - 74
D Vw,-- -~ p -- 0. 1

a x

This equation can be applied to vibration problems of cylindrical shells when

we assume that the circumferential and longitudinal inertia forces are negligi-

ble. Then the external loading p can be replaced by the radial inertia force

-ph 2 .

On substituting this value into Equation (1) and nondirnensionalizing the resulting

equation, we obtain
-8 1 64w 2 --4

-8 + 1 + b W = 0 (2)V w -• --- -7 Vw W -

c ac a

Let us assume w to be of the form

w = (E eiUkmn 1) cos n 8 sin wt (3)

Equation (3) will satisfy Equation (2) if the coefficients X mn are the roots of

the following equation

(X + r n 2 n) 4 + -I X r n2 1 4
(km~n +-7 km

n c (4)

(ekmn +n2)Z

which is an eighth order equation for Xmn as a function of c, n and (I Con-

versely, we note that if any one of these roots is known, then the frequency

parameter fl is determined.
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Since the exact determination of Xmn is quite difficult, a number of

simplifying assumptions will be made to obtain approximate values. Let us

assume that n2 is large compared to X2 . Then Equation (4) can be approxi-m"

mated by

X 4 c2 (f 4 n8) (5)
kmn

For given values of n, c, and fl the right-hand side of Equation (5) is a constant.

Therefore, four approximate values of Xkmn are of the form

Xmn,-Xmn, ixmn, -iXmn (6)

The remaining four values of X kmn implied by Equation (3) are neglected.

The deflection function w can now be written approximately as

w = (c1 sin Xmn g + c2 cos Xmn g + c3 sinh Xmn

+ c4 cosh Xmn 9) cos n e sin Ur t (7)

which gives a longitudinal deflection shape similar to that of the vibrating beam.

Approximate values of Xmn are now obtained by substituting Equation (7) into the

appropriate boundary condition equations for a vibrating beam and solving the

resulting determinant. The characteristics roots Xmn obtained by the above

procedure are identical to the vibrating beam characteristic roots. A tabula-

tion of these values, for various combinations of boundary conditions, can be

found in Reference (12) and in many text books (for example, References 13

and 14). The frequency parameter 0 for a given n is now obtained by substitut-

ing the real values of the beam characteristic roots Xmn into Equation (4) and

solving directly for 0.

Although the method outlined is based on heuristic reasoning, its justifica-

tion is that the results obtained from it are in good agreement with experimental

results. As an initial check, results of the approximate frequency equation for a

cylinder with clamped ends are compared in Table I with experimental frequen-

cies obtained by Koval (Reference 15) and with the results of another approximate

equation obtained by Arnold and Warburton (Reference 5). In general, the results
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of the present approximate theory are greater than those obtained by Arnold

and Warburton but are in about as good agreement with experimental results.

From Table 1 we see that the agreement between the present approximate

theory and experiment becomes better as the number of circumferential waves

increases, in accordance with the assumptions of the theory.

III. EXPERIMENTAL INVESTIGATION

A series of tests were performed on cylinders with one end clamped and

the other free, as an additional check of the approximate method outlined in the

previous section. Since a detailed discussion of the test setup and test pro-

cedure can be found in Reference 16, only a brief outline will be given here.

The two test specimens used were made of 1020 steel with dimensions as

given in Table 1. The cylinders were formed over an 8-inch diameter mandrel

and the seam was formed by a butt weld. The cylinders were then spun to elimi-

nate eccentricities. One end of the cylinders was clamped in an aluminum plate

which contained a trough filled with cerrobend, a low melting point alloy. The

other end of the cylinder was free. The cylinder was supported by a shaft

attached to the end plate as shown in Figure 1.

An electromagnet was used to excite the specimen. The test procedure

consisted of varying the frequency of the electromagnet by means of an oscillator

until a resonant frequency was reached. The frequency was aczurately measured

by an electronic counter. A microphone, which could traverse the cylinder axially

and circumferentially, measured the response of the shell. The microphone output

and the geometrical position of the microphone were recorded on an x-y plotter to

yield a graphical plot of the longitudinal and circumferential mode shape for a

given resonance frequency. A typical record is shown in Figure 2.

IV. COMPARISON OF CLAMPED-FREE CYLINDER TEST RESULTS
WITH THEORY

The numerical and experimental results of the present investigation are

given in Table 2. For the first longitudinal mode of vibration (me=l), the results

of the approximate theory and of Rayleigh's inextensional theory are compared

with the experimental results in Figures 3 and 4. Numerical results of the
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Table 2. Tabulation of Experimental Values of Frequency Spectra,
Node Locations, and Viscous Damping Coefficients.

Mat - 1020 Steel h - 0.00 inch.s a/h 400 a/1 * 0.440

Inexenio@nsal TIer,.crnlsI Approxin,..c Theory
Theory .lat M I. -Fr- S. S. - Fr..

m n flrycioe¢d I(lvr/.,'d f(1yl/.i ft. yrl, ve) ru a1 02 w3 04 S3

1 1 46 400 422 %4 1.06 0
S "40 11 0.71 0

7 no 304 310 296 0.7S 0
0 1611 176 A91. 137 0.79 0

10 077 S76 1.0 605 1.40 0
II 700 711 717 711 I .19 0
12 01' 044 076 07Z 2.03 0
13 97T 99? 1027 1023 - 0

2 7 I 7.12 S90- 0 0.7S
0 69N 666 S61 1 22 0 0 6 a
9 612 66% 596 1.10 0 0.7

12 PI% 931 90go 0 0.40
13 912 1071 103S 2.00 0 0 .16
I 111 1 1z28 I111 2. 11 0 0. 1

15 1373 1399 1306 1.90 0 0.71
16 173 :SK1 1 5731 1.65 0 0 36
17 1716 IT17 1772 2 26 0 0.70

6 190g 2070 1030 3.00 0 0 30 0 86
II 101I 109$ 0OZI I 46 0 0 -14 0 03
:1 1219 1227 1102 . 2 17 0 0 35 0 76
14 11.1 1149 11 1 I 77 0 0 19 0 13
16 1640 1668 16'2 1.11 0 0.40 0.07
17 IR16 1033N 111 2.37 0 0.45 0. 94

4 6 1230 32,13 3105 1 05 0 0. 13 0 66 0 0o
7 1001 2609 2517 z 93 0 0 2% 0. 64 0.91
0 2200 2266 211 I 97 0 0.18 0.63 0 1 -
1I 19A 1.3.11 1160 1.70 0 0 27 0.66 0.94
14 111 16(It 1343 I 63 0 0.25 0 63 0 02
1S 1679 1700 1632 1.03 0 0.32 0.56 0 04
S 6 110 4216 4207 2.00 0 0 21 0.45 0 60 0.00

14 103r I174 1q10 A. R 0 0 10 0 40 0 66 0 09
17 2104 2z2o 2174 I 00 0 0 13 0.40 0.62 0 09

hI.,1 Infl Steel 6h 0 040 -nche a/h 100 s/I 0.44R

I I0 120 910 96 1I1Z 0 - -
I I'l, 112 186 I'l 0.900 0
4 'In 402 470 101 0 060 0

S', n 339 619 603 0 403 0
'1 $1' 795 092 R7 2 . 36% 0

- II I :Z 01 S107 0 115 0
S1.171 I174 St6' 1331 0. 17 0
9 107) 1791 1971 I196 1 0 10 0
0 2111 ZZI1 2.1It, 2123 0. 0tz 0
2 11,6 11 2 1167 0.963 0 0 710
6 S116 13 111,0 1.0•0 0 0 700
1 1111 116$ 1ý6 0 100 0 0 710
6 .02 21 1 1673 0 330 0 0 710

I 2670 1037 3017 I 12 0 0 220
1I 1762 1212 1137 - 0 0 110
II 4130 1063 4829 0 0 110
2 3RZ 6106 6036 - 0 0 12 .S -0.10
3 .122S 4719 4%01 A 35 0 0 110 0 760
3 2347 2030 Z9 91 23 0 0 4.0 0 $111

6 Z162 2t01 I178 1.22 0 0 10zo 0 $00
7 2007 2227 2047 I 24 0 0 310 0 790
8 ZO1I ZZRI I 113 I O0 0 0 110 0l 010
9 Z316 ?31$ I.106 . 0 0 100 0 700
10 2630 !877 2713 I 01 0 0 420 0 020

12 3742 1031 1701 I I' 0 0 '10 0 710
14 "014 002 017 - -
1 S3116 S777 5711 - 0 0 1Fo 0 $10
16 6001 6S23 6462 1 01 0 0 17" 0 790

4 2 6881 6937 7104 3 71 0 0 z23 0 "21 0 090
1 5711 3941 3962 1 36 0 0 210 0 140 0.790
4 476"6 4977 4197 3. 10 0 0 173 0 330 0 780
6 3377 139 1 1 411 1 0 - . -
7 10313 1210 3077 I 37 0 0 22 0 S1 0. 3
R 20T7 3112 2937 .1 11 0 0 77 0 36 0 03s
1) 2919 3101 1044 I o0 0 0.29 0.36 0 03

I1 n139 1421 4'17 1 I 0 0 23 0 71 0.86
I 1493 3792 3670 1.6 0 0 20 0 7 0 07
12 3936 4261 11S6 2 01 0 0 27 0 .6 0. 11
11 I.12') lll 4712 1. 71 0 0 jO 0.36 q 0S
16 6I10 6014 6731, 1 0 0.28 0. 01 0.07
$1069 1012 11lf. I 17 0 0 21 0 47 0.63 0.00

;n I1i7 1lt.1 7011q I 41 0 0.20 0.43 0.68 0 90

II -711 11. 4701- 0 0.20 0.14 0.63 0I.00
16 672$ 720$ 7172 z 70 0 0.21 0 40 0 56 0.00
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Figure 4. Graphical Comparison of Experimental Results with Theory
for m = I of a Clamped-Free Shell (a/h = 100).
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approximate theory for both a simply supported-free cylinder and L clamped-

free cylinder are plotted. All the theoretical curves are very close to each

other for the larger values of n. It is interesting to note that the experimental

values follow the approximate curve for the clamped-free cylinder very closely

for all values of n for the cylinder with a radius thickness ratio of 400. The

experimental results for the cylinder with a radius thickness ratio of 100, on

the other hand, fall between the theoretical curves for the clamped-free cylinder

and the simply supported-free cylinder for low values of n (n T 4). The reason

for this discrepancy is suspected to be imperfect clamping and is being investi-

gated further by means of additional tests and by a more accurate theory.

A comparison, in Figures 5 and 6, of the results of the approximate equa-

tion with experimental results for m z 2 indicates good agreement. The results

also indicate that the value of n at which the minimum frequency occurs depends

upon the axial wave length. As m increases, the value of n corresponding to

the minimum frequency also increases. This phenomenon was first noted by

Arnold and Warburton for cylinders that were simply supported or clamped at

both ends.

The position of the experimentally determined axial node locations are

designated as Si in Table 2. The position of clamped-free and simply supported-

free beam node points are tabulated in Table 3. The variation of the position of

the experimental node points for different values of n is greatest at m 2 and

decreases as the number of axial waves increases. The tabulated results of the

average experimental axial node positions correspond fairly well with the beam

node positions but do not coincide exactly, a result probably due to the fact that

the beam functions are not exact solutions of the equations for the vibrations of

cylindrical shells.

V. CONCLUSIONS

Experimental and theoretical results for clamped-free and clamped-clamped

cylinders are in good agreement for larger values of n (say, n> 4). It appears

therefore, that the approximate frequency equation can be used for arbitrary

boundary conditions in this region. For n > 4 and m = 1, the Rayleigh inexten-

sional theory gives reasonable results for the clamped-free cylinders. The
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Table 3. Position of Clamped-Free and Simply Supported-Free
Beam Node Points.

mr2 1  S3 4 S5

1 0 - - -

2 0 0.73/0.79 - - -

3 0 0.45/0.51 0.85/0.87 - -

4 0 0.31/0.35 0.61/0.65 0.89/0.91 -

5 0 0. 23/0.27 0.47/0.49 0.71/0.73 0. 93/0.93

Key = S.S.-Free/Cl-Free
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experiments also indicate that although the beam functions may not be the true

deflection shape, they are near enough to the true shape so that when used in
conjunction with the frequency equation they give a very close approximation

to the experimental data. Some anomalies in the agreement between theory

and experiment were obtained for modes characterized by n < 4. These are

being investigated further at the present time.
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APPENDIX

STRUCTURAL DAMPING

In addition to the frequency spectra, over-all structural damping coefficients

were experimentally obtained. These coefficients were obtained by passing the

response signal coming from the microphone through an ac-dc log converter and

recording the output on an oscilloscope camera. The output was calibrated by

a db meter and the decay curves obtained by disconnecting the electromagnet

from the circuit while the cylinder was at resonance. A typical decay curve

appears in Figure 7.

The equation of motion.of the free vibration of an elastic system (using the

same notation as given in Reference 17 can be written as:

+ cn j + Wn 0 (c .=21fVg)n n n •n n n €

where

g structural damping coefficient

f'g viscous damping coefficient

On amplitude of nth mode

Wn natural frequency corresponding to 0n

Tabulated values of f'g as a function of mode shape and frequency are given in

Table 2. A plot of the "viscous" damping coefficient as a function of the number

of circumferential waves is shown in Figure 8. The results indicate a large

scatter with f'g = 2 being an average value for both cylinders. It is interesting

to note that an average value of two for the viscous damping coefficient is cloýe

to that found by the author in Reference 16 for a steel cylinder clamped on both

ends. Fung, Sechler and Kaplan obtained an average value of f'g = 6 for a set

of aluminum cylinders. Figure 8 also shows that for n < 8, the m = I and m = 2

modes have an average value of one for f'g and the m = 4 and m = 5 modes an

average value of three. The m = 3 modes seem to fluctuate between one and

three. The peaking effect at a unique frequency found by the author in Reference

16 did not occur in the present investigation. It is clear that much work remains

to be done before the structural damping phenomenon is completely understood,.
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